valore grazie alla rarità - определение. Что такое valore grazie alla rarità
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое valore grazie alla rarità - определение

RELATIVISTIC WAVE EQUATION DESCRIBING THE PROPAGATION OF A FREE SPIN 1½ PARTICLE
Rarita-Schwinger action; Rarita-Schwinger spinor; Rarita-Schwinger Equation; Rarita-Schwinger field; Rarita-Schwinger equation; Rarita–Schwinger field; Rarita–Schwinger spinor

Valore and Domenico Casini         
  • Portrait of [[Pope Leo X]]
ITALIAN PAINTERS
Domenico Casini; Valore Casini
Valore Casini (1590–1660) and Domenico Casini (active, 17th century) were two brothers, both Italian painters, active in Florence, mainly as portraitists in the first half of the 17th century.
Alla Kudlai         
UKRAINIAN FEMALE POP SINGER
Alla Kudlay; Alla Petrivna Kudlai; Kudlai
Alla Petrivna Kudlai (born 23 July 1954) is a Ukrainian singer. In 1987 she was awarded Merited Artist of Ukraine (Заслужений артист України), and in 1997, People's Artist of Ukraine (Народний артист України)
Alla Zahaikevych         
  • Zagaikevich at the [[Odesa International Film Festival]] in 2014
UKRAINIAN COMPOSER
Alla Zagaykevych
Alla Zahaikevych (; born 17 December 1966) is a Ukrainian composer of contemporary classical music, performance artist, organiser of electroacoustic music projects, musicologist. Her name is alternatively spelled Alla Zagaykevych on all releases and in texts which are in English.

Википедия

Rarita–Schwinger equation

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

In modern notation it can be written as:

( ϵ μ κ ρ ν γ 5 γ κ ρ i m σ μ ν ) ψ ν = 0 {\displaystyle \left(\epsilon ^{\mu \kappa \rho \nu }\gamma _{5}\gamma _{\kappa }\partial _{\rho }-im\sigma ^{\mu \nu }\right)\psi _{\nu }=0}

where ϵ μ κ ρ ν {\displaystyle \epsilon ^{\mu \kappa \rho \nu }} is the Levi-Civita symbol, γ 5 {\displaystyle \gamma _{5}} and γ ν {\displaystyle \gamma _{\nu }} are Dirac matrices, m {\displaystyle m} is the mass, σ μ ν i 2 [ γ μ , γ ν ] {\displaystyle \sigma ^{\mu \nu }\equiv {\frac {i}{2}}[\gamma ^{\mu },\gamma ^{\nu }]} , and ψ ν {\displaystyle \psi _{\nu }} is a vector-valued spinor with additional components compared to the four component spinor in the Dirac equation. It corresponds to the (1/2, 1/2) ⊗ ((1/2, 0) ⊕ (0, 1/2)) representation of the Lorentz group, or rather, its (1, 1/2) ⊕ (1/2, 1) part.


This field equation can be derived as the Euler–Lagrange equation corresponding to the Rarita–Schwinger Lagrangian:

L = 1 2 ψ ¯ μ ( ϵ μ κ ρ ν γ 5 γ κ ρ i m σ μ ν ) ψ ν {\displaystyle {\mathcal {L}}=-{\tfrac {1}{2}}\;{\bar {\psi }}_{\mu }\left(\epsilon ^{\mu \kappa \rho \nu }\gamma _{5}\gamma _{\kappa }\partial _{\rho }-im\sigma ^{\mu \nu }\right)\psi _{\nu }}

where the bar above ψ μ {\displaystyle \psi _{\mu }} denotes the Dirac adjoint.

This equation controls the propagation of the wave function of composite objects such as the delta baryons (
Δ
) or for the conjectural gravitino. So far, no elementary particle with spin 3/2 has been found experimentally.

The massless Rarita–Schwinger equation has a fermionic gauge symmetry: is invariant under the gauge transformation ψ μ ψ μ + μ ϵ {\displaystyle \psi _{\mu }\rightarrow \psi _{\mu }+\partial _{\mu }\epsilon } , where ϵ ϵ α {\displaystyle \epsilon \equiv \epsilon _{\alpha }} is an arbitrary spinor field. This is simply the local supersymmetry of supergravity, and the field must be a gravitino.

"Weyl" and "Majorana" versions of the Rarita–Schwinger equation also exist.